Fluorescent Fusion Proteins of Soluble Guanylyl Cyclase Indicate Proximity of the Heme Nitric Oxide Domain and Catalytic Domain

نویسندگان

  • Tobias Haase
  • Nadine Haase
  • Jan Robert Kraehling
  • Soenke Behrends
چکیده

BACKGROUND To examine the structural organisation of heterodimeric soluble guanylyl cyclase (sGC) Förster resonance energy transfer (FRET) was measured between fluorescent proteins fused to the amino- and carboxy-terminal ends of the sGC beta1 and alpha subunits. METHODOLOGY/PRINCIPAL FINDINGS Cyan fluorescent protein (CFP) was used as FRET donor and yellow fluorescent protein (YFP) as FRET acceptor. After generation of recombinant baculovirus, fluorescent-tagged sGC subunits were co-expressed in Sf9 cells. Fluorescent variants of sGC were analyzed in vitro in cytosolic fractions by sensitized emission FRET. Co-expression of the amino-terminally tagged alpha subunits with the carboxy-terminally tagged beta1 subunit resulted in an enzyme complex that showed a FRET efficiency of 10% similar to fluorescent proteins separated by a helix of only 48 amino acids. Because these findings indicated that the amino-terminus of the alpha subunits is close to the carboxy-terminus of the beta1 subunit we constructed fusion proteins where both subunits are connected by a fluorescent protein. The resulting constructs were not only fluorescent, they also showed preserved enzyme activity and regulation by NO. CONCLUSIONS/SIGNIFICANCE Based on the ability of an amino-terminal fragment of the beta1 subunit to inhibit activity of an heterodimer consisting only of the catalytic domains (alphacatbetacat), Winger and Marletta (Biochemistry 2005, 44:4083-90) have proposed a direct interaction of the amino-terminal region of beta1 with the catalytic domains. In support of such a concept of "trans" regulation of sGC activity by the H-NOX domains our results indicate that the domains within sGC are organized in a way that allows for direct interaction of the amino-terminal regulatory domains with the carboxy-terminal catalytic region. In addition, we constructed "fluorescent-conjoined" sGC's by fusion of the alpha amino-terminus to the beta1 carboxy-terminus leading to a monomeric, fluorescent and functional enzyme complex. To our knowledge this represents the first example where a fluorescent protein links two different subunits of a higher ordered complex to yield a stoichometrically fixed functionally active monomer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Residues in the Heme Domain of Soluble Guanylyl Cyclase that are Important for Basal and Stimulated Catalytic Activity

Nitric oxide signals through activation of soluble guanylyl cyclase (sGC), a heme-containing heterodimer. NO binds to the heme domain located in the N-terminal part of the β subunit of sGC resulting in increased production of cGMP in the catalytic domain located at the C-terminal part of sGC. Little is known about the mechanism by which the NO signaling is propagated from the receptor domain (h...

متن کامل

Mapping Soluble Guanylyl Cyclase and Protein Disulfide Isomerase Regions of Interaction

Soluble guanylyl cyclase (sGC) is a heterodimeric nitric oxide (NO) receptor that produces cyclic GMP. This signaling mechanism is a key component in the cardiovascular system. NO binds to heme in the β subunit and stimulates the catalytic conversion of GTP to cGMP several hundred fold. Several endogenous factors have been identified that modulate sGC function in vitro and in vivo. In previous ...

متن کامل

Cobinamides are novel coactivators of nitric oxide receptor that target soluble guanylyl cyclase catalytic domain.

Soluble guanylyl cyclase (sGC), a ubiquitously expressed heme-containing receptor for nitric oxide (NO), is a key mediator of NO-dependent processes. In addition to NO, a number of synthetic compounds that target the heme-binding region of sGC and activate it in a NO-independent fashion have been described. We report here that dicyanocobinamide (CN2-Cbi), a naturally occurring intermediate of v...

متن کامل

Biochemical and structural characterization of C-terminal constructs of bovine soluble guanylate cyclase

Background Soluble guanylate cyclase (sGC) is the key enzyme in the NO-sGC-cGMP signaling cascade crucial in regulating the cardiovascular system. Low output of this system causes hypertension and acute heart failure, which are the leading causes of death globally. Mammalian sGC is a heterodimer. Each of the two homologous subunits (a and b) contains three domains: an N-terminal regulatory doma...

متن کامل

NO and CO differentially activate soluble guanylyl cyclase via a heme pivot-bend mechanism.

Diatomic ligand discrimination by soluble guanylyl cyclase (sGC) is paramount to cardiovascular homeostasis and neuronal signaling. Nitric oxide (NO) stimulates sGC activity 200-fold compared with only four-fold by carbon monoxide (CO). The molecular details of ligand discrimination and differential response to NO and CO are not well understood. These ligands are sensed by the heme domain of sG...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010